Are the two larger models (en_core_web_md & en_core_web_lg) supposed to work for prodigy 0.5.0? I just installed 0.5.0 and tried to run it with the larger models, but I get the following errors, not sure what to make of it:
prodigy ner.teach en_ner_prod050 en_core_web_lg …/traindata_NER1.txt --label LOC
Traceback (most recent call last):
File “/usr/lib/python3.5/runpy.py”, line 184, in _run_module_as_main
“main”, mod_spec)
File “/usr/lib/python3.5/runpy.py”, line 85, in _run_code
exec(code, run_globals)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/prodigy/main.py”, line 238, in
controller = recipe(*args, use_plac=True)
File “cython_src/prodigy/core.pyx”, line 143, in prodigy.core.recipe.recipe_decorator.recipe_proxy
File “cython_src/prodigy/util.pyx”, line 173, in prodigy.util.suggest_view_id
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/toolz/itertoolz.py”, line 368, in first
return next(iter(seq))
File “cython_src/prodigy/components/sorters.pyx”, line 127, in iter
File “cython_src/prodigy/components/sorters.pyx”, line 53, in genexpr
File “cython_src/prodigy/models/ner.pyx”, line 215, in call
File “cython_src/prodigy/models/ner.pyx”, line 185, in get_tasks
File “cytoolz/itertoolz.pyx”, line 1046, in cytoolz.itertoolz.partition_all.next (cytoolz/itertoolz.c:14538)
File “cython_src/prodigy/models/ner.pyx”, line 151, in predict_spans
File “cytoolz/itertoolz.pyx”, line 1046, in cytoolz.itertoolz.partition_all.next (cytoolz/itertoolz.c:14538)
File “cython_src/prodigy/components/preprocess.pyx”, line 12, in split_sentences
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/spacy/language.py”, line 531, in pipe
for doc, context in izip(docs, contexts):
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/spacy/language.py”, line 554, in pipe
for doc in docs:
File “nn_parser.pyx”, line 369, in pipe
File “cytoolz/itertoolz.pyx”, line 1046, in cytoolz.itertoolz.partition_all.next (cytoolz/itertoolz.c:14538)
File “nn_parser.pyx”, line 369, in pipe
File “cytoolz/itertoolz.pyx”, line 1046, in cytoolz.itertoolz.partition_all.next (cytoolz/itertoolz.c:14538)
File “pipeline.pyx”, line 397, in pipe
File “pipeline.pyx”, line 402, in spacy.pipeline.Tagger.predict
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/neural/_classes/model.py”, line 161, in call
return self.predict(x)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 55, in predict
X = layer(X)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/neural/_classes/model.py”, line 161, in call
return self.predict(x)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 293, in predict
X = layer(layer.ops.flatten(seqs_in, pad=pad))
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/neural/_classes/model.py”, line 161, in call
return self.predict(x)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 55, in predict
X = layer(X)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/neural/_classes/model.py”, line 161, in call
return self.predict(x)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/neural/_classes/model.py”, line 125, in predict
y, _ = self.begin_update(X)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 372, in uniqued_fwd
Y_uniq, bp_Y_uniq = layer.begin_update(X[ind], drop=drop)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 61, in begin_update
X, inc_layer_grad = layer.begin_update(X, drop=drop)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in begin_update
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 258, in wrap
output = func(*args, **kwargs)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in begin_update
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 258, in wrap
output = func(*args, **kwargs)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in begin_update
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 258, in wrap
output = func(*args, **kwargs)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in begin_update
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 176, in
values = [fwd(X, *a, **k) for fwd in forward]
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/api.py”, line 258, in wrap
output = func(*args, **kwargs)
File “/home/prodigy/virtualenv_prodigy_0.5.0/lib/python3.5/site-packages/thinc/neural/_classes/static_vectors.py”, line 67, in begin_update
dotted = self.ops.batch_dot(vectors, self.W)
File “ops.pyx”, line 299, in thinc.neural.ops.NumpyOps.batch_dot
ValueError: shapes (168,0) and (300,128) not aligned: 0 (dim 1) != 300 (dim 0)