[paths]
train = null
dev = null
vectors = null
init_tok2vec = null
[system]
gpu_allocator = null
seed = 0
[nlp]
lang = "en"
pipeline = ["tok2vec","ner"]
disabled =
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 1000
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
vectors = {"@vectors":"spacy.Vectors.v1"}
[components]
[components.ner]
factory = "ner"
incorrect_spans_key = "incorrect_spans"
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100
[components.ner.model]
architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null
[components.ner.model.tok2vec]
architectures = "spacy.Tok2VecListener.v1"
width = 96
upstream = "*"
[components.tok2vec]
source = "assets/base_model_new"
[corpora]
readers = "prodigy.MergedCorpus.v1"
eval_split = 0.2
sample_size = 1.0
[corpora.ner]
readers = "prodigy.NERCorpus.v1"
datasets = ["asia_steel_rebar_volume"]
eval_datasets =
default_fill = "outside"
incorrect_key = "incorrect_spans"
[training]
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 1
patience = 1600
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components =
annotating_components =
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
before_to_disk = null
before_update = null
[training.batcher]
batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null
[training.batcher.size]
schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
t = 0.0
[training.optimizer]
optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.001
[training.score_weights]
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
after_init = null
[initialize.components]
[initialize.before_init]
callbacks = "spacy.copy_from_base_model.v1"
tokenizer = "assets/base_model_new"
vocab = "assets/base_model_new"
[initialize.tokenizer]
+++++++++++++++++++++++++++++++++
The above one is the config data I have used.
assets/base_model_new --> This is the model I have generated using custom tokenization and used the same while generating .spacy files as well.