This is similar to another ongoing query, but different enough that I thought it probably deserves a separate enquiry.
I'm looking through the annotations that Prodigy is creating after I run a custom recipe which uses a model to predict annotations.
Normally when I run an image.manual
custom recipe, the JSON entry generated looks something like this (when exported from the database):
{
"image": "sample/path/redacted/04-F-0269_Global_Screening_Guidance-03.jpg",
"text": "04-F-0269_Global_Screening_Guidance-03",
"meta": { "file": "04-F-0269_Global_Screening_Guidance-03.jpg" },
"path": "sample/path/redacted/04-F-0269_Global_Screening_Guidance-03.jpg",
"_is_binary": false,
"_input_hash": 1413334570,
"_task_hash": 1588323116,
"_view_id": "image_manual",
"width": 800,
"height": 1035,
"spans": [
{
"id": "0ef6ccd0-4a79-471d-9aa1-9c903c83801e",
"label": "CONTENT",
"color": "yellow",
"x": 76.5,
"y": 112.5,
"height": 786.1,
"width": 587.6,
"center": [370.3, 505.55],
"type": "rect",
"points": [
[76.5, 112.5],
[76.5, 898.6],
[664.1, 898.6],
[664.1, 112.5]
]
},
{
"id": "cd05d521-8efb-416b-87df-4624f16ca7f3",
"label": "REDACTION",
"color": "cyan",
"x": 80.3,
"y": 786.2,
"height": 20.2,
"width": 428.4,
"center": [294.5, 796.3],
"type": "rect",
"points": [
[80.3, 786.2],
[80.3, 806.4],
[508.7, 806.4],
[508.7, 786.2]
]
},
{
"id": "3e268e33-4eba-457d-8d17-8271a79ee589",
"label": "REDACTION",
"color": "magenta",
"x": 108.1,
"y": 772.3,
"height": 15.1,
"width": 400.6,
"center": [308.4, 779.85],
"type": "rect",
"points": [
[108.1, 772.3],
[108.1, 787.4],
[508.7, 787.4],
[508.7, 772.3]
]
}
],
"answer": "accept",
"_timestamp": 1638214078
}
I have noticed that when I run my custom recipe with a model in the middle, all I get is this:
{
"image": "sample/path/redacted/04-F-0269_Global_Screening_Guidance-03.jpg",
"text": "04-F-0269_Global_Screening_Guidance-03",
"meta": { "file": "04-F-0269_Global_Screening_Guidance-03.jpg" },
"path": "sample/path/redacted/04-F-0269_Global_Screening_Guidance-03.jpg",
"_is_binary": false,
"_input_hash": 1413334570,
"_task_hash": 1588323116,
"_view_id": "image_manual",
"width": 800,
"height": 1035,
"spans": [
{
"label": "CONTENT",
"points": [
[76.5, 112.5],
[76.5, 898.6],
[664.1, 898.6],
[664.1, 112.5]
]
},
{
"label": "REDACTION",
"points": [
[80.3, 786.2],
[80.3, 806.4],
[508.7, 806.4],
[508.7, 786.2]
]
},
{
"label": "REDACTION",
"points": [
[108.1, 772.3],
[108.1, 787.4],
[508.7, 787.4],
[508.7, 772.3]
]
}
],
"answer": "accept",
"_timestamp": 1638214078
}
Inside the spans
property, the only two properties each span has is label
and points
. I don't get an annotation id
autogenerated, I don't get anything like the height
and width
etc.
Is this a bug or is this how it's meant to be working?
In my current self-training workflow, what I would really want (and expect) would be for the initial (full) set of properties to be generated regardless of whether some of the spans were initially derived from a model or not.
Is there any way to get access to whatever is used on Prodigy's end to generate these properties? esp things like the id
generator and the colour etc?
Thank you!