I am able to use prodigy annotations to train NER models using prodigy ner.batch-train and python code. But when I try to use the same annotation dataset (exported using ner.gold-to-spacy) with the cli "train" command I get the following error. What am I doing wrong?
python -m spacy train en ner_system_model ner_system_train_manual_annotations.json Preformatted textner_system_test_manual_annotations.json -b model -p ner
Training pipeline: ['ner']
Starting with base model 'model'
Counting training words (limit=0)
Itn Dep Loss NER Loss UAS NER P NER R NER F Tag % Token % CPU WPS GPU WPS
--- ---------- ---------- ------- ------- ------- ------- ------- ------- ------- -------
✔ Saved model to output directory
ner_system_model\model-final
Traceback (most recent call last):
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\spacy\cli\train.py", line 281, in train
scorer = nlp_loaded.evaluate(dev_docs, debug)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\spacy\language.py", line 631, in evaluate
docs, golds = zip(*docs_golds)
ValueError: not enough values to unpack (expected 2, got 0)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\spacy\__main__.py", line 35, in <module>
plac.call(commands[command], sys.argv[1:])
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\plac_core.py", line 328, in call
cmd, result = parser.consume(arglist)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\plac_core.py", line 207, in consume
return cmd, self.func(*(args + varargs + extraopts), **kwargs)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\spacy\cli\train.py", line 368, in train
best_model_path = _collate_best_model(meta, output_path, nlp.pipe_names)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\spacy\cli\train.py", line 425, in _collate_best_model
bests[component] = _find_best(output_path, component)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\spacy\cli\train.py", line 444, in _find_best
accs = srsly.read_json(epoch_model / "accuracy.json")
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\srsly\_json_api.py", line 49, in read_json
file_path = force_path(location)
File "C:\Users\ojustwin.naik\AppData\Local\Continuum\anaconda3\envs\tf-gpu\lib\site-packages\srsly\util.py", line 11, in force_path
raise ValueError("Can't read file: {}".format(location))
ValueError: Can't read file: ner_system_model\model0\accuracy.json