Hi,
I have trained a custom textcat model in spaCy and wanted to use that model as a base model to label more data in Prodigy but got this error.
Task queue depth is 1 Exception when serving /get_questions Traceback (most recent call last): File "/opt/anaconda3/lib/python3.7/site-packages/waitress/channel.py", line 336, in service task.service() File "/opt/anaconda3/lib/python3.7/site-packages/waitress/task.py", line 175, in service self.execute() File "/opt/anaconda3/lib/python3.7/site-packages/waitress/task.py", line 452, in execute app_iter = self.channel.server.application(env, start_response) File "/opt/anaconda3/lib/python3.7/site-packages/hug/api.py", line 451, in api_auto_instantiate return module.__hug_wsgi__(*args, **kwargs) File "/opt/anaconda3/lib/python3.7/site-packages/falcon/api.py", line 244, in __call__ responder(req, resp, **params) File "/opt/anaconda3/lib/python3.7/site-packages/hug/interface.py", line 789, in __call__ raise exception File "/opt/anaconda3/lib/python3.7/site-packages/hug/interface.py", line 762, in __call__ self.render_content(self.call_function(input_parameters), context, request, response, **kwargs) File "/opt/anaconda3/lib/python3.7/site-packages/hug/interface.py", line 698, in call_function return self.interface(**parameters) File "/opt/anaconda3/lib/python3.7/site-packages/hug/interface.py", line 100, in __call__ return __hug_internal_self._function(*args, **kwargs) File "/opt/anaconda3/lib/python3.7/site-packages/prodigy/_api/hug_app.py", line 206, in get_questions tasks = controller.get_questions() File "cython_src/prodigy/core.pyx", line 130, in prodigy.core.Controller.get_questions File "cython_src/prodigy/components/feeds.pyx", line 58, in prodigy.components.feeds.SharedFeed.get_questions File "cython_src/prodigy/components/feeds.pyx", line 63, in prodigy.components.feeds.SharedFeed.get_next_batch File "cython_src/prodigy/components/feeds.pyx", line 140, in prodigy.components.feeds.SessionFeed.get_session_stream File "/opt/anaconda3/lib/python3.7/site-packages/toolz/itertoolz.py", line 376, in first return next(iter(seq)) File "cython_src/prodigy/components/sorters.pyx", line 151, in __iter__ File "cython_src/prodigy/components/sorters.pyx", line 61, in genexpr File "cython_src/prodigy/util.pyx", line 381, in predict File "/opt/anaconda3/lib/python3.7/site-packages/toolz/itertoolz.py", line 242, in interleave yield next(itr) File "cython_src/prodigy/models/textcat.pyx", line 168, in __call__ File "/opt/anaconda3/lib/python3.7/site-packages/spacy/language.py", line 688, in pipe for doc, context in izip(docs, contexts): File "/opt/anaconda3/lib/python3.7/site-packages/spacy/language.py", line 716, in pipe for doc in docs: File "/opt/anaconda3/lib/python3.7/site-packages/spacy/language.py", line 903, in _pipe for doc in docs: File "pipes.pyx", line 914, in pipe File "pipes.pyx", line 920, in spacy.pipeline.pipes.TextCategorizer.predict File "/opt/anaconda3/lib/python3.7/site-packages/thinc/neural/_classes/model.py", line 169, in __call__ return self.predict(x) File "/opt/anaconda3/lib/python3.7/site-packages/thinc/neural/_classes/feed_forward.py", line 40, in predict X = layer(X) File "/opt/anaconda3/lib/python3.7/site-packages/thinc/neural/_classes/model.py", line 169, in __call__ return self.predict(x) File "/opt/anaconda3/lib/python3.7/site-packages/thinc/neural/_classes/model.py", line 133, in predict y, _ = self.begin_update(X, drop=None) File "/opt/anaconda3/lib/python3.7/site-packages/thinc/api.py", line 163, in begin_update values = [fwd(X, *a, **k) for fwd in forward] File "/opt/anaconda3/lib/python3.7/site-packages/thinc/api.py", line 163, in <listcomp> values = [fwd(X, *a, **k) for fwd in forward] File "/opt/anaconda3/lib/python3.7/site-packages/thinc/api.py", line 256, in wrap output = func(*args, **kwargs) File "/opt/anaconda3/lib/python3.7/site-packages/thinc/neural/_classes/feed_forward.py", line 46, in begin_update X, inc_layer_grad = layer.begin_update(X, drop=drop) File "/opt/anaconda3/lib/python3.7/site-packages/spacy/_ml.py", line 679, in concatenate_lists_fwd drop *= drop_factor TypeError: unsupported operand type(s) for *=: 'NoneType' and 'float'
spaCy version 2.2.4
Prodigy Version 1.8.5
Command I used:
prodigy textcat.teach my_dataset ./models/custom ./prodigy_input.jsonl --label A,B,C --patterns ./patterns.jsonl