config.cfg for bert.ner.manual

Before diving deeper into this question I just want to make sure that I understand what your goal is. If you're trying to train a BERT model, you can also use spaCy without having to resort to this custom recipe. To quote the docs:

New in Prodigy v1.11 and spaCy v3

spaCy v3 lets you train a transformer-based pipeline and will take care of all tokenization alignment under the hood, to ensure that the subword tokens match to the linguistic tokenization. You can use data-to-spacy to export your annotations and train with spaCy v3 and a transformer-based config directly, or run train and provide the config via the --config argument.

So just to check, are you trying to train a BERT model using spaCy? If so, you might just want to follow the steps that I describe here. If you're trying to generate data for another library, like Huggingface, that depends on the sentencepiece tokeniser ... then I can dive a bit deeper.