Just a reminder that I built this model using the core_web_sm model as a base Loading gensim word2vec vectors for terms.teach? :
tagger/cfg
{
"cnn_maxout_pieces":2,
"pretrained_dims":0
}
meta.json:
{
"lang":"en",
"pipeline":[
"tagger",
"parser",
"ner"
],
"accuracy":{
"token_acc":99.8698372794,
"ents_p":84.9664503965,
"ents_r":85.6312524451,
"uas":91.7237657538,
"tags_acc":97.0403350292,
"ents_f":85.2975560875,
"las":89.800872413
},
"name":"core_web_sm",
"license":"CC BY-SA 3.0",
"author":"Explosion AI",
"url":"https://explosion.ai",
"vectors":{
"width":100,
"vectors":1081412,
"keys":1081412
},
"sources":[
"OntoNotes 5",
"Common Crawl"
],
"version":"2.0.0",
"spacy_version":">=2.0.0a18",
"parent_package":"spacy",
"speed":{
"gpu":null,
"nwords":291344,
"cpu":5122.3040471407
},
"email":"contact@explosion.ai",
"description":"English multi-task CNN trained on OntoNotes, with GloVe vectors trained on Common Crawl. Assigns word vectors, context-specific token vectors, POS tags, dependency parse and named entities."
}